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Abstract

We study the branches of equilibrium states of rigid polymer rods with the Onsager excluded volume potential in two-dimensional space. Since
the probability density and the potential are related by the Boltzmann relation at equilibrium, we represent an equilibrium state using the Fourier
coefficients of the Onsager potential. We derive a non-linear system for the Fourier coefficients of the equilibrium state. We describe a procedure
for solving the non-linear system. The procedure yields multiple branches of ordered states. This suggests that the phase diagram of rigid polymer
rods with the Onsager potential has a more complex structure than that with the Maier–Saupe potential. A study of free energy indicates that
the first branch of ordered states is stable while the subsequent branches are unstable. However, the instability of the subsequent branches does
not mean they are not interesting. Each of these unstable branches, under certain external potential, can be made metastable, and thus may be
observed.
© 2008 Elsevier B.V. All rights reserved.

PACS: 61.30.Gd; 61.30.Vx
The isotropic-nematic phase transition in rigid rod-like poly-
mers is a classical topic [9]. In 1949, Onsager first examined
the isotropic-nematic phase transition theoretically by model-
ing the steric excluded volume interactions [1]. Onsager’s study
was based on a virial expansion, which yields a mean field po-
tential, now bearing his name (the Onsager potential). Using
this mean field potential and choosing an appropriate trial func-
tion for the orientation distribution function, Onsager was able
to argue that when the concentration is high enough, there is
a transition from a uniform isotropic state to an orientationally
ordered prolate nematic state. Many theories have been formu-
lated after Onsager’s pioneering work. An excellent review on
the theoretical advances of liquid crystalline polymers is given
in [2]. In this study, we adopt the Doi–Hess model [3,4], which
was first developed by Doi and Edwards to describe spatially
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homogeneous flows of rodlike liquid crystal polymers and has
been used in many studies [5–7]. In the Doi–Hess model, the
polymer ensemble is represented by an orientational probabil-
ity density in a meso-scale much larger than individual polymer
rods but much smaller than the macroscopic flow. Each poly-
mer rod undergoes Brownian diffusion and is affected by the
interaction with other polymer rods within the meso-scale. The
inter-molecular interaction is usually modeled using the On-
sager potential or the Maier–Saupe potential, which is an ap-
proximation to the Onsager potential. The main mathematical
difference between the Onsager potential and the Maier–Saupe
potential is that the Onsager potential depends on the whole
probability density function while the Maier–Saupe potential
depends only on the second moment. As a result, the Doi–Hess
model with the Onsager potential is mathematically much more
challenging than with the Maier–Saupe potential.

The Doi–Hess model with the Onsager potential has been
studied numerically and the Onsager theory has been extended
to other systems. For example, Larson [8] applied the spherical
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harmonic expansions to solve the Doi–Hess equation with the
Onsager potential for the 3D time-dependent orientation distri-
bution function in the presence of shearing flow. Lasher [10]
extended Onsager’s work to the nematic ordering of hard rods
with a direct application of the scaled particle approach. Vroege
and Lekkerkerker [11] provided a comprehensive overview on
the theory and experiments in lyotropic colloidal and poly-
mer liquid crystals. In particular, they generalized Onsager’s
virial theory to polydisperse solutions and soft interactions.
Chrzanowska [12] developed a simple Onsager theory type den-
sity functional theory (DFT) of a two-dimensional system of
hard needles.

Recently, the phase diagram of rigid rod polymers with
the Maier–Saupe potential, previously obtained in various nu-
merical studies (for example, see [5] and [13] and references
therein), has been studied analytically [14–16]. Thus, it is
timely and worthwhile to revisit analytically the phase diagram
of rigid rod polymers with the Onsager potential. In studying a
phase diagram, it is important to get a full picture of the phase
diagram, including all stable and unstable branches. Besides
mathematical completeness, there are two more reasons for in-
cluding all branches when studying a phase diagram: (a) the
full structure of the phase diagram helps us understand the dy-
namics and the stabilities; and (b) under a certain external field,
unstable branches may be made meta-stable and thus may be
observed.

In this Letter, we consider the case of rigid rod polymers in
the two-dimensional space with the Onsager intermolecular in-
teraction potential. In the two-dimensional space, orientation is
represented by the polar angle θ and the orientational probabil-
ity density ρ(θ, t) is governed by the Smoluchowski equation

(1)
∂ρ

∂t
= D

∂

∂θ

(
Φ ′

Onsager(θ)

kBT
ρ + ∂ρ

∂θ

)
,

where D is the rotational diffusion coefficient of each polymer
rod, kB the Boltzmann constant and T the absolute temperature.
For simplicity, we use U(θ) to denote the Onsager potential
normalized by kBT , which has the form

U(θ) ≡ ΦOnsager(θ)

kBT
= b

2π∫
0

∣∣sin(θ̃ − θ)
∣∣ρ(θ̃) dθ̃

(2)= b

2π∫
0

| sin θ̃ |ρ(θ̃ + θ) dθ̃ .

Here b is proportional to the normalized polymer concentration
and is inversely proportional to the temperature. We start with
the Fourier expansion of probability density ρ(θ)

(3)ρ(θ) = 1

2π
+

∞∑
k=1

(ak coskθ + bk sinkθ).

We first express the Onsager potential in terms of the Fourier
coefficients {ak, bk} of ρ(θ). For that goal, we first derive two
integral identities.
2π∫
0

| sin θ̃ | coskθ̃ dθ̃ =
π∫

−π

| sin θ̃ | coskθ̃ dθ̃

= 2

π∫
0

sin θ̃ coskθ̃ dθ̃

(4)=
{ −4

k2 − 1
, k = even,

0, k = odd,

2π∫
0

| sin θ̃ | sin kθ̃ dθ̃

=
π∫

−π

| sin θ̃ | sin kθ̃ dθ̃

(5)=
π∫

0

sin θ̃ sin kθ̃ dθ̃ −
π∫

0

sin θ̃ sinkθ̃ dθ̃ = 0.

The Fourier expansion of ρ(θ̃ + θ) as a function of θ̃ has the
form

ρ(θ̃ + θ) = 1

2π
+

∞∑
k=1

(ak coskθ + bk sin kθ) coskθ̃

(6)+
∞∑

k=1

(bk coskθ − ak sin kθ) sin kθ̃ .

Substituting Fourier expansion (6) into Onsager potential (2),
and using identities (4) and (5), we obtain the Fourier expansion
of U(θ)

(7)

U(θ) = 4b

2π
−

∞∑
j=1

(
4ba2j

(2j)2 − 1
cos 2jθ + 4bb2j

(2j)2 − 1
sin 2jθ

)
.

The equilibrium probability density is related to the Onsager
potential by the Boltzmann distribution:

ρ(θ) = 1

Z
exp

(−U(θ)
)
,

(8)Z =
2π∫

0

exp
(−U(θ)

)
dθ.

The Boltzmann relation allows us to use the Fourier coefficients
of U(θ) to represent the equilibrium state. For that purpose, we
introduce

(9)c2j = 4ba2j

(2j)2 − 1
, d2j = 4bb2j

(2j)2 − 1
.

In terms of {c2j , d2j }, U(θ) and ρ(θ) have the expressions:

(10)U(θ) = 4b

2π
−

∞∑
j=1

(c2j cos 2jθ + d2j sin 2jθ),
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ρ(θ) = 1

Z
exp

(−U(θ)
)

(11)= 1

Z
exp

( ∞∑
j=1

(c2j cos 2jθ + d2j sin 2jθ)

)

where Z is the partition function given by

Z =
2π∫

0

exp

( ∞∑
j=1

(c2j cos 2jθ + d2j sin 2jθ)

)
dθ.

Eq. (11) shows that the equilibrium probability density ρ(θ) is
periodic with period π . Consequently, in the Fourier expansion
of ρ(θ), we have a2j+1 = b2j+1 = 0.

Next we show that U(θ) can be made an even function by
shifting the coordinate system. Using (9) to relate ρ(θ) given in
(3) to the derivatives of U(θ) given in (10), we get

ρ(θ) = 1

2π
+

∞∑
j=1

(a2j cos 2jθ + b2j sin 2jθ)

= 1

2π
+ 1

4b

∞∑
j=1

(
c2j

(
(2j)2 − 1

)
cos 2jθ

+ d2j

(
(2j)2 − 1

)
sin 2jθ

)
(12)= 1

4b

(
U ′′(θ) + U(θ)

)
.

Combining this result with the Boltzmann relation (8) leads to a
non-linear differential equation for the Onsager potential U(θ):

(13)U ′′(θ) + U(θ) − 4b

Z
exp

(−U(θ)
) = 0.

Let θ0 be the location where U(θ) attains its maximum in
[0,2π]. We shift the coordinate system to make θ0 = 0. Thus,
the initial conditions for differential equation (13) at θ = 0 are
U(0) = U0 and U ′(0) = 0. Both the differential equation and
the initial conditions are invariant under the change of variable
θnew = −θold. Therefore, we conclude that U(θ) = U(−θ), and
consequently d2j = 0. It follows from (9) that b2j = 0. In terms
of {c2j }, U(θ) and ρ(θ) have the expressions:

(14)U(θ) = 4b

2π
−

∞∑
j=1

c2j cos 2jθ,

(15)

ρ(θ) = 1∫ 2π

0 exp(
∑∞

j=1 c2j cos 2jθ) dθ
exp

( ∞∑
j=1

c2j cos 2jθ

)

(9) is one set of equations relating Fourier coefficients {a2j } and
{c2j }. Calculating Fourier coefficients {a2j } directly from ρ(θ)

expressed in (15) yields a second set of equations relating {a2j }
and {c2j }:

a2k = 1

π

2π∫
0

cos 2kθρ(θ) dθ

(16)= 1

π

∫ 2π

0 cos 2kθ exp(
∑∞

j=1 c2j cos 2jθ) dθ∫ 2π exp(
∑∞

c cos 2jθ) dθ
.

0 j=1 2j
Combining (9) and (16), we arrive at a non-linear system for
{c2k}.∫ 2π

0 cos 2kθ exp(
∑∞

j=1 c2j cos 2jθ) dθ∫ 2π

0 exp(
∑∞

j=1 c2j cos 2jθ) dθ

(17)= π

4b

(
4k2 − 1

)
c2k, k = 1,2,3, . . . .

Below we describe a procedure for solving non-linear sys-
tem (17). Here, we use the Fourier coefficients {c2j } of U(θ)

to represent an equilibrium state. The equilibrium probability
density ρ(θ) is related to U(θ) by the Boltzmann distribution
and is expressed in terms of {c2j } in (15). The advantage of
using Fourier coefficients {c2j } and the exponential form (15)
is that the positivity of equilibrium probability density ρ(θ) is
automatically enforced without putting any constraints on the
Fourier coefficients {c2j }.

We solve non-linear system (17) for ordered states. Here an
ordered state is one in which not all the coefficients of {c2j } are
zero. We first find ordered states with c2 �= 0. In non-linear sys-
tem (17), b is a physical parameter that can be tuned by varying
the polymer concentration or the temperature. From the point
view of physics, it is desirable to express (c2, c4, c6, . . .), the
solution of nonlinear system (17), as a function of b. Mathemat-
ically, however, it is more convenient to treat c2 as an indepen-
dent variable and view b as a function of c2. We adopt this math-
ematical formulation. Specifically, in non-linear system (17),
we let r ≡ c2, we treat r as a parameter, and we solve for b

and (c4, c6, c8, . . .). The iterative procedure described below
provides a way of constructing solution b and (c4, c6, c8, . . .)

for a given value of c2 = r �= 0. For conciseness of presenta-
tion, we introduce shorthand notations. Let C ≡ (c4, c6, c8, . . .).
Remember c2 is fixed at the given value of r . We introduce
functions:

χ2k(C) ≡
∫ 2π

0 cos 2kθ exp(r cos 2θ + ∑∞
j=2 c2j cos 2jθ) dθ∫ 2π

0 exp(r cos 2θ + ∑∞
j=2 c2j cos 2jθ) dθ

,

(18)k = 1,2,3, . . . .

With these notations, non-linear system (17) becomes

(19)
3π

4b
r = χ2(C),

(20)
(4k2 − 1)π

4b
c2k = χ2k(C), k = 2,3,4, . . . .

Suppose the nth iteration starts with C(n) = (c
(n)
2 , c

(n)
4 , c

(n)
6 ,

c
(n)
8 , . . .). Remember that, in our mathematical formulation,

c2 = r �= 0 is given while b is part of the solution to be de-
termined. So we use Eq. (19) to update b and then use Eq. (20)
to update the rest of the Fourier coefficients (c4, c6, c8, . . .).

Update b: b(n+1) = 3π

4χ2(C(n))
r,

Update c2k: c
(n+1)
2k = 4b(n+1)

(4k2 − 1)π
χ2k

(
C(n)

)
,

k = 2,3,4, . . . .
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Our iterative procedure C(n) → C(n+1) is

c
(n+1)
2k = 3r

(4k2 − 1)χ2(C(n))
χ2k

(
C(n)

)
,

(21)k = 2,3,4, . . . .

This is how we calculate the first branch of ordered state. The
convergence of iterative method (21) is verified in numerical
implementations. A rigorous mathematical proof for the con-
vergence, however, is still open.

Next we calculate the second branch of ordered states by
finding solutions of (17) with c2 = 0 but c4 �= 0. Specifically,
in non-linear system (17), we keep c2 = 0, we keep c4 �= 0
fixed and treat it as a parameter, and we solve for b and
(c6, c8, c10, . . .). One way to keep c2 = 0 is to assume that so-
lutions on the second branch have 2 × 2 = 4 fold symmetry,
that is, they are periodic with period 2π/4. If g(θ) is periodic
with period 2π/4, then we always have

∫ 2π

0 cos 2θg(θ) dθ = 0.
Our numerical calculations indicate that invoking symmetry is
the only way to keep c2 = 0, although a rigorous mathemati-
cal proof is still open. With the 4 fold symmetry, we only need
to consider the Fourier coefficients {c4j , j � 1}. Recall that in
our mathematical formulation, we keep the leading non-zero
Fourier coefficient fixed and treat it as a parameter. For the sec-
ond branch, we keep c4 �= 0 fixed and treat it as a parameter.
Then, the resulting non-linear system for b and {c4j , j > 1}
is solved using an iterative procedure similar to (21) described
above. The subsequent branches of ordered states are calculated
in a similar way. For example, the third branch is calculated by
invoking 2 × 3 = 6 fold symmetry.

To plot the phase diagram, we represent an ordered state

using the magnitude of the Onsager potential,
√∑∞

j=1(c2j )2.

Fig. 1(a) shows the first three branches of ordered states of
rigid rod polymers with the Onsager potential. The first branch
(labeled as S1(b)) intersects with the isotropic state at b ≈
4.7124. The second branch (labeled as S2(b)) intersects with
the isotropic state at b ≈ 23.5619. The third branch (labeled
as S3(b)) intersects with the isotropic state at b ≈ 54.9779.
The procedure of calculating ordered states can be contin-
ued beyond the first three branches shown. Numerical results
suggest that there are infinitely many branches of ordered
states where the kth branch is characterized by having 2k-
fold symmetry with c2k = 0 but c4k �= 0. For this reason, in
the space of {c2j , j = 1, . . . ,∞}, which is of infinite dimen-
sions, two different branches of ordered states will never inter-
sect each other. Interestingly, in the two-dimensional space of

(b,
√∑∞

j=1(c2j )2 ), as shown in Fig. 1(a), it is also true that

two different branches of ordered states will not intersect each
other.

In comparison, in the case of polymers with the Maier–
Saupe intermolecular potential, there is only one branch of or-
dered states and it intersects with the isotropic state at b = 4.
Fig. 1(b) compares the only branch of ordered states for the
Maier–Saupe polymer (dashed line) with the first branch of or-
dered states for the Onsager polymers (solid line).
(a)

(b)

Fig. 1. (a) The first three branches of ordered state for the Onsager polymer.
(b) The comparison of the only branch of ordered states for the Maier–Saupe
polymer (dashed line) with the first branch of ordered states for the Onsager
polymers (solid line).

In the numerical calculation above, we used {c2j , j =
1, . . . ,N} with N = 4096. The infinite sum

√∑∞
j=1(c2j )2 is

approximated by the corresponding partial sum. To show that
this approach is at least self-consistent and that N = 4096 is
large enough, we examine how fast |c2j | converges to zero as j

increases. Fig. 2(a) shows the plot of |c2j | vs index j for the so-
lution on the first branch at b = 80. It is clear that as j increases,
|c2j | decays exponentially to zero, and the limit of machine pre-
cision is reached at about j ≈ 500.

To determine the stability of the branches of ordered states
shown in Fig. 1(a), we examine the free energies of these equi-
librium states. The Onsager free energy functional of probabil-
ity density ρ(θ) at normalized polymer concentration b is given
by

(22)G
([ρ], b) ≡

2π∫
0

(
ρ(θ) lnρ(θ) + 1

2
U(θ)ρ(θ)

)
dθ.

Fig. 2(b) shows the free energies of the isotropic branch
(dashed line) and the first three branches of ordered states (solid
lines) for the Onsager polymers. More detailed studies of free
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(a)

(b)

Fig. 2. (a) Plot of |c2j | vs index j . (b) Free energies of the isotropic branch
(dashed line) and the first three branches of ordered states (solid lines) for the
Onsager polymers.

energies reveal that the isotropic branch is stable before the first
branch of ordered states appears (i.e., for b < 4.7124). Once
the first branch of ordered states appears (i.e., for b > 4.7124),
the isotropic branch becomes unstable. The first branch of or-
dered states is stable while the subsequent branches ordered
states are unstable. The instability of the subsequent branches
of ordered states does not mean these branches are not inter-
esting. For example, the second branch of ordered states can
be made metastable under an external potential of the form
ΦExternal(θ) = A cos 4θ , and thus may be experimentally ob-
served under such a condition.

In [17], the equilibrium bifurcation map of 3D polymers
with the Onsager interaction potential was studied. A linear sta-
bility analysis of the base isotropic state was carried out. It was
found that high order bifurcations are linearly unstable. Our re-
sults on 2D polymers with the Onsager interaction potential
are consistent with the 3D results in [17]. In a future study,
we will (a) tackle the mathematical conjectures suggested by
numerical calculations; and (b) carry out asymptotic analysis
to identify the exact bifurcation locations and find asymptotic
expansions of branches near bifurcation locations. One of our
goals is to first re-derive all conclusions in the 2D case ana-
lytically so that all conclusions are established on solid mathe-
matical ground. Once the 2D case of the Onsager polymers is
analytically solved, we will move on to revisit the 3D case an-
alytically. For the 3D case of the Onsager polymers, we shall
start with a rigorous mathematical derivation of the axisym-
metry. The axisymmetry of equilibria of the 3D Maier–Saupe
polymers has been mathematically established only recently in
three studies [14–16]. All these three studies rely heavily on the
specific form of the Maier–Saupe potential. For analytical stud-
ies of the 3D Onsager polymers, new mathematical tools are
needed.

The multiple branches of ordered states for the Onsager
polymers stem from the fact that the Fourier expansion of func-
tion | sin θ |, the kernel in the Onsager potential, has infinite
number of terms.

(23)| sin θ | = 2

π
−

∞∑
k=1

4

π(4k2 − 1)
cos 2kθ.

The solutions on the kth branch have 2k fold symmetry. Basi-
cally, in every meso-scale neighborhood (since we are studying
spatially homogeneous solutions) the ensemble of polymer rods
is divided into k sub-groups of equal size, and each sub-group
is aligned with a director. The k directors are uniformly spaced
on the unit circle, resulting in a 2k fold symmetry. This 2k fold
symmetry of the kth branch corresponds to the terms cos 2kθ ,
cos 4kθ and beyond in the Onsager potential (23). Indeed, for an
ensemble of polymer rods with the Onsager interaction poten-
tial, if k sub-groups and k directors are sustained by an external
force, then a newly added polymer rod will align with any of
these k directors individually with equal probability. Again,
a newly added polymer rod is able to see these k directors in-
dividually because of the terms cos 2kθ , cos 4kθ and beyond
in the Onsager potential (23). In the Maier–Saupe potential,
however, the kernel is replaced by − cos2 θ = const − 1

2 cos 2θ ,
which has only the cos 2θ term in its Fourier expansion (ex-
cluding the constant term). As a result, the 2k fold symmetry
is suppressed for k > 1. For an ensemble of polymer rods with
the Maier–Saupe interaction potential, even if k sub-groups and
k directors are sustained by an external force, a newly added
polymer rod will not be able to see the k directors individu-
ally for k > 1. That is why the polymers with the Maier–Saupe
potential have only one branch of ordered states.
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